If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50y^2+10y=0
a = 50; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·50·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*50}=\frac{-20}{100} =-1/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*50}=\frac{0}{100} =0 $
| x-0.15x=140 | | -2x+35=95 | | n/9=10/45 | | -9x+12=-8x+116 | | 3x+4=233x+4=28 | | 2y+2+122=180 | | x2+12x=−36 | | -1.4x+9=0.09x^2-0.74+1 | | x+63+x+91=180 | | x+(x+100)+2(x+100)=7x | | 3x=180-93+13 | | 14-x/7=21 | | 7x^2=112+42x | | 21=c5+11 | | y=70(.17)^4 | | 2x=6+96 | | X+85=85+2x | | (6x+4)=(8x+12) | | 5b+3=8b | | 6(5-x)+2(3-x)=13 | | 69+x+20=180 | | -7+2x=6 | | y-9=52 | | x+40+x+56=180 | | 36=b-31 | | h-17=13 | | n+8=46 | | v-17=81 | | 6=h-11 | | 4x-10=2x+8x | | 3/4x-11=-195 | | 8(2x+5)=10x+13 |